3.1.38 \(\int \frac {(d+c d x)^4 (a+b \tanh ^{-1}(c x))}{x^4} \, dx\) [38]

Optimal. Leaf size=189 \[ -\frac {b c d^4}{6 x^2}-\frac {2 b c^2 d^4}{x}+a c^4 d^4 x+2 b c^3 d^4 \tanh ^{-1}(c x)+b c^4 d^4 x \tanh ^{-1}(c x)-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}-\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 a c^3 d^4 \log (x)+\frac {19}{3} b c^3 d^4 \log (x)-\frac {8}{3} b c^3 d^4 \log \left (1-c^2 x^2\right )-2 b c^3 d^4 \text {PolyLog}(2,-c x)+2 b c^3 d^4 \text {PolyLog}(2,c x) \]

[Out]

-1/6*b*c*d^4/x^2-2*b*c^2*d^4/x+a*c^4*d^4*x+2*b*c^3*d^4*arctanh(c*x)+b*c^4*d^4*x*arctanh(c*x)-1/3*d^4*(a+b*arct
anh(c*x))/x^3-2*c*d^4*(a+b*arctanh(c*x))/x^2-6*c^2*d^4*(a+b*arctanh(c*x))/x+4*a*c^3*d^4*ln(x)+19/3*b*c^3*d^4*l
n(x)-8/3*b*c^3*d^4*ln(-c^2*x^2+1)-2*b*c^3*d^4*polylog(2,-c*x)+2*b*c^3*d^4*polylog(2,c*x)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 12, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {6087, 6021, 266, 6037, 272, 46, 331, 212, 36, 29, 31, 6031} \begin {gather*} -\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}+a c^4 d^4 x+4 a c^3 d^4 \log (x)+b c^4 d^4 x \tanh ^{-1}(c x)-2 b c^3 d^4 \text {Li}_2(-c x)+2 b c^3 d^4 \text {Li}_2(c x)+\frac {19}{3} b c^3 d^4 \log (x)+2 b c^3 d^4 \tanh ^{-1}(c x)-\frac {2 b c^2 d^4}{x}-\frac {8}{3} b c^3 d^4 \log \left (1-c^2 x^2\right )-\frac {b c d^4}{6 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + c*d*x)^4*(a + b*ArcTanh[c*x]))/x^4,x]

[Out]

-1/6*(b*c*d^4)/x^2 - (2*b*c^2*d^4)/x + a*c^4*d^4*x + 2*b*c^3*d^4*ArcTanh[c*x] + b*c^4*d^4*x*ArcTanh[c*x] - (d^
4*(a + b*ArcTanh[c*x]))/(3*x^3) - (2*c*d^4*(a + b*ArcTanh[c*x]))/x^2 - (6*c^2*d^4*(a + b*ArcTanh[c*x]))/x + 4*
a*c^3*d^4*Log[x] + (19*b*c^3*d^4*Log[x])/3 - (8*b*c^3*d^4*Log[1 - c^2*x^2])/3 - 2*b*c^3*d^4*PolyLog[2, -(c*x)]
 + 2*b*c^3*d^4*PolyLog[2, c*x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6031

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (-Simp[(b/2)*PolyLog[2, (-c)*x]
, x] + Simp[(b/2)*PolyLog[2, c*x], x]) /; FreeQ[{a, b, c}, x]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6087

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rubi steps

\begin {align*} \int \frac {(d+c d x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^4} \, dx &=\int \left (c^4 d^4 \left (a+b \tanh ^{-1}(c x)\right )+\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^4}+\frac {4 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^3}+\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}+\frac {4 c^3 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}\right ) \, dx\\ &=d^4 \int \frac {a+b \tanh ^{-1}(c x)}{x^4} \, dx+\left (4 c d^4\right ) \int \frac {a+b \tanh ^{-1}(c x)}{x^3} \, dx+\left (6 c^2 d^4\right ) \int \frac {a+b \tanh ^{-1}(c x)}{x^2} \, dx+\left (4 c^3 d^4\right ) \int \frac {a+b \tanh ^{-1}(c x)}{x} \, dx+\left (c^4 d^4\right ) \int \left (a+b \tanh ^{-1}(c x)\right ) \, dx\\ &=a c^4 d^4 x-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}-\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 a c^3 d^4 \log (x)-2 b c^3 d^4 \text {Li}_2(-c x)+2 b c^3 d^4 \text {Li}_2(c x)+\frac {1}{3} \left (b c d^4\right ) \int \frac {1}{x^3 \left (1-c^2 x^2\right )} \, dx+\left (2 b c^2 d^4\right ) \int \frac {1}{x^2 \left (1-c^2 x^2\right )} \, dx+\left (6 b c^3 d^4\right ) \int \frac {1}{x \left (1-c^2 x^2\right )} \, dx+\left (b c^4 d^4\right ) \int \tanh ^{-1}(c x) \, dx\\ &=-\frac {2 b c^2 d^4}{x}+a c^4 d^4 x+b c^4 d^4 x \tanh ^{-1}(c x)-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}-\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 a c^3 d^4 \log (x)-2 b c^3 d^4 \text {Li}_2(-c x)+2 b c^3 d^4 \text {Li}_2(c x)+\frac {1}{6} \left (b c d^4\right ) \text {Subst}\left (\int \frac {1}{x^2 \left (1-c^2 x\right )} \, dx,x,x^2\right )+\left (3 b c^3 d^4\right ) \text {Subst}\left (\int \frac {1}{x \left (1-c^2 x\right )} \, dx,x,x^2\right )+\left (2 b c^4 d^4\right ) \int \frac {1}{1-c^2 x^2} \, dx-\left (b c^5 d^4\right ) \int \frac {x}{1-c^2 x^2} \, dx\\ &=-\frac {2 b c^2 d^4}{x}+a c^4 d^4 x+2 b c^3 d^4 \tanh ^{-1}(c x)+b c^4 d^4 x \tanh ^{-1}(c x)-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}-\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 a c^3 d^4 \log (x)+\frac {1}{2} b c^3 d^4 \log \left (1-c^2 x^2\right )-2 b c^3 d^4 \text {Li}_2(-c x)+2 b c^3 d^4 \text {Li}_2(c x)+\frac {1}{6} \left (b c d^4\right ) \text {Subst}\left (\int \left (\frac {1}{x^2}+\frac {c^2}{x}-\frac {c^4}{-1+c^2 x}\right ) \, dx,x,x^2\right )+\left (3 b c^3 d^4\right ) \text {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )+\left (3 b c^5 d^4\right ) \text {Subst}\left (\int \frac {1}{1-c^2 x} \, dx,x,x^2\right )\\ &=-\frac {b c d^4}{6 x^2}-\frac {2 b c^2 d^4}{x}+a c^4 d^4 x+2 b c^3 d^4 \tanh ^{-1}(c x)+b c^4 d^4 x \tanh ^{-1}(c x)-\frac {d^4 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {2 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}-\frac {6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 a c^3 d^4 \log (x)+\frac {19}{3} b c^3 d^4 \log (x)-\frac {8}{3} b c^3 d^4 \log \left (1-c^2 x^2\right )-2 b c^3 d^4 \text {Li}_2(-c x)+2 b c^3 d^4 \text {Li}_2(c x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 197, normalized size = 1.04 \begin {gather*} \frac {d^4 \left (-2 a-12 a c x-b c x-36 a c^2 x^2-12 b c^2 x^2+6 a c^4 x^4-2 b \tanh ^{-1}(c x)-12 b c x \tanh ^{-1}(c x)-36 b c^2 x^2 \tanh ^{-1}(c x)+6 b c^4 x^4 \tanh ^{-1}(c x)+24 a c^3 x^3 \log (x)+38 b c^3 x^3 \log (c x)-6 b c^3 x^3 \log (1-c x)+6 b c^3 x^3 \log (1+c x)-16 b c^3 x^3 \log \left (1-c^2 x^2\right )-12 b c^3 x^3 \text {PolyLog}(2,-c x)+12 b c^3 x^3 \text {PolyLog}(2,c x)\right )}{6 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + c*d*x)^4*(a + b*ArcTanh[c*x]))/x^4,x]

[Out]

(d^4*(-2*a - 12*a*c*x - b*c*x - 36*a*c^2*x^2 - 12*b*c^2*x^2 + 6*a*c^4*x^4 - 2*b*ArcTanh[c*x] - 12*b*c*x*ArcTan
h[c*x] - 36*b*c^2*x^2*ArcTanh[c*x] + 6*b*c^4*x^4*ArcTanh[c*x] + 24*a*c^3*x^3*Log[x] + 38*b*c^3*x^3*Log[c*x] -
6*b*c^3*x^3*Log[1 - c*x] + 6*b*c^3*x^3*Log[1 + c*x] - 16*b*c^3*x^3*Log[1 - c^2*x^2] - 12*b*c^3*x^3*PolyLog[2,
-(c*x)] + 12*b*c^3*x^3*PolyLog[2, c*x]))/(6*x^3)

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 228, normalized size = 1.21

method result size
derivativedivides \(c^{3} \left (a c \,d^{4} x -\frac {6 d^{4} a}{c x}+4 d^{4} a \ln \left (c x \right )-\frac {d^{4} a}{3 c^{3} x^{3}}-\frac {2 d^{4} a}{c^{2} x^{2}}+b c \,d^{4} x \arctanh \left (c x \right )-\frac {6 d^{4} b \arctanh \left (c x \right )}{c x}+4 d^{4} b \arctanh \left (c x \right ) \ln \left (c x \right )-\frac {d^{4} b \arctanh \left (c x \right )}{3 c^{3} x^{3}}-\frac {2 d^{4} b \arctanh \left (c x \right )}{c^{2} x^{2}}-2 d^{4} b \dilog \left (c x \right )-2 d^{4} b \dilog \left (c x +1\right )-2 d^{4} b \ln \left (c x \right ) \ln \left (c x +1\right )-\frac {d^{4} b}{6 c^{2} x^{2}}-\frac {2 d^{4} b}{c x}+\frac {19 d^{4} b \ln \left (c x \right )}{3}-\frac {11 d^{4} b \ln \left (c x -1\right )}{3}-\frac {5 d^{4} b \ln \left (c x +1\right )}{3}\right )\) \(228\)
default \(c^{3} \left (a c \,d^{4} x -\frac {6 d^{4} a}{c x}+4 d^{4} a \ln \left (c x \right )-\frac {d^{4} a}{3 c^{3} x^{3}}-\frac {2 d^{4} a}{c^{2} x^{2}}+b c \,d^{4} x \arctanh \left (c x \right )-\frac {6 d^{4} b \arctanh \left (c x \right )}{c x}+4 d^{4} b \arctanh \left (c x \right ) \ln \left (c x \right )-\frac {d^{4} b \arctanh \left (c x \right )}{3 c^{3} x^{3}}-\frac {2 d^{4} b \arctanh \left (c x \right )}{c^{2} x^{2}}-2 d^{4} b \dilog \left (c x \right )-2 d^{4} b \dilog \left (c x +1\right )-2 d^{4} b \ln \left (c x \right ) \ln \left (c x +1\right )-\frac {d^{4} b}{6 c^{2} x^{2}}-\frac {2 d^{4} b}{c x}+\frac {19 d^{4} b \ln \left (c x \right )}{3}-\frac {11 d^{4} b \ln \left (c x -1\right )}{3}-\frac {5 d^{4} b \ln \left (c x +1\right )}{3}\right )\) \(228\)
risch \(\frac {b \,c^{4} d^{4} \ln \left (c x +1\right ) x}{2}-\frac {3 b \,c^{2} d^{4} \ln \left (c x +1\right )}{x}-\frac {b c \,d^{4} \ln \left (c x +1\right )}{x^{2}}-\frac {b c \,d^{4}}{6 x^{2}}-\frac {2 b \,c^{2} d^{4}}{x}+\frac {c \,d^{4} b \ln \left (-c x +1\right )}{x^{2}}-\frac {c^{4} d^{4} b \ln \left (-c x +1\right ) x}{2}+\frac {3 c^{2} d^{4} b \ln \left (-c x +1\right )}{x}-\frac {d^{4} a}{3 x^{3}}-c^{3} d^{4} a +2 c^{3} d^{4} \dilog \left (-c x +1\right ) b -\frac {2 c \,d^{4} a}{x^{2}}-b \,c^{3} d^{4}-\frac {5 b \,c^{3} d^{4} \ln \left (c x +1\right )}{3}+\frac {13 b \,c^{3} d^{4} \ln \left (c x \right )}{6}-\frac {b \,d^{4} \ln \left (c x +1\right )}{6 x^{3}}-2 b \,c^{3} d^{4} \dilog \left (c x +1\right )+\frac {d^{4} b \ln \left (-c x +1\right )}{6 x^{3}}+\frac {25 c^{3} d^{4} b \ln \left (-c x \right )}{6}+4 c^{3} d^{4} a \ln \left (-c x \right )-\frac {6 c^{2} d^{4} a}{x}-\frac {11 c^{3} d^{4} b \ln \left (-c x +1\right )}{3}+a \,c^{4} d^{4} x\) \(318\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^4*(a+b*arctanh(c*x))/x^4,x,method=_RETURNVERBOSE)

[Out]

c^3*(a*c*d^4*x-6*d^4*a/c/x+4*d^4*a*ln(c*x)-1/3*d^4*a/c^3/x^3-2*d^4*a/c^2/x^2+b*c*d^4*x*arctanh(c*x)-6*d^4*b*ar
ctanh(c*x)/c/x+4*d^4*b*arctanh(c*x)*ln(c*x)-1/3*d^4*b*arctanh(c*x)/c^3/x^3-2*d^4*b*arctanh(c*x)/c^2/x^2-2*d^4*
b*dilog(c*x)-2*d^4*b*dilog(c*x+1)-2*d^4*b*ln(c*x)*ln(c*x+1)-1/6*d^4*b/c^2/x^2-2*d^4*b/c/x+19/3*d^4*b*ln(c*x)-1
1/3*d^4*b*ln(c*x-1)-5/3*d^4*b*ln(c*x+1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^4,x, algorithm="maxima")

[Out]

a*c^4*d^4*x + 1/2*(2*c*x*arctanh(c*x) + log(-c^2*x^2 + 1))*b*c^3*d^4 + 2*b*c^3*d^4*integrate((log(c*x + 1) - l
og(-c*x + 1))/x, x) + 4*a*c^3*d^4*log(x) - 3*(c*(log(c^2*x^2 - 1) - log(x^2)) + 2*arctanh(c*x)/x)*b*c^2*d^4 +
((c*log(c*x + 1) - c*log(c*x - 1) - 2/x)*c - 2*arctanh(c*x)/x^2)*b*c*d^4 - 1/6*((c^2*log(c^2*x^2 - 1) - c^2*lo
g(x^2) + 1/x^2)*c + 2*arctanh(c*x)/x^3)*b*d^4 - 6*a*c^2*d^4/x - 2*a*c*d^4/x^2 - 1/3*a*d^4/x^3

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^4,x, algorithm="fricas")

[Out]

integral((a*c^4*d^4*x^4 + 4*a*c^3*d^4*x^3 + 6*a*c^2*d^4*x^2 + 4*a*c*d^4*x + a*d^4 + (b*c^4*d^4*x^4 + 4*b*c^3*d
^4*x^3 + 6*b*c^2*d^4*x^2 + 4*b*c*d^4*x + b*d^4)*arctanh(c*x))/x^4, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} d^{4} \left (\int a c^{4}\, dx + \int \frac {a}{x^{4}}\, dx + \int \frac {4 a c}{x^{3}}\, dx + \int \frac {6 a c^{2}}{x^{2}}\, dx + \int \frac {4 a c^{3}}{x}\, dx + \int b c^{4} \operatorname {atanh}{\left (c x \right )}\, dx + \int \frac {b \operatorname {atanh}{\left (c x \right )}}{x^{4}}\, dx + \int \frac {4 b c \operatorname {atanh}{\left (c x \right )}}{x^{3}}\, dx + \int \frac {6 b c^{2} \operatorname {atanh}{\left (c x \right )}}{x^{2}}\, dx + \int \frac {4 b c^{3} \operatorname {atanh}{\left (c x \right )}}{x}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**4*(a+b*atanh(c*x))/x**4,x)

[Out]

d**4*(Integral(a*c**4, x) + Integral(a/x**4, x) + Integral(4*a*c/x**3, x) + Integral(6*a*c**2/x**2, x) + Integ
ral(4*a*c**3/x, x) + Integral(b*c**4*atanh(c*x), x) + Integral(b*atanh(c*x)/x**4, x) + Integral(4*b*c*atanh(c*
x)/x**3, x) + Integral(6*b*c**2*atanh(c*x)/x**2, x) + Integral(4*b*c**3*atanh(c*x)/x, x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^4,x, algorithm="giac")

[Out]

integrate((c*d*x + d)^4*(b*arctanh(c*x) + a)/x^4, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )\,{\left (d+c\,d\,x\right )}^4}{x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*atanh(c*x))*(d + c*d*x)^4)/x^4,x)

[Out]

int(((a + b*atanh(c*x))*(d + c*d*x)^4)/x^4, x)

________________________________________________________________________________________